

(Affiliated Colleges)

406 - M.Sc. Zoology
Programme Structure and Scheme of Examination (under CBCS)
(Applicable to the candidates admitted from the academic year 2023 -2024 onwards)

			Credit	Hours/ Week	N	/Iaxim Marl	
Part	Course Code	Study Components & Course Title			CIA	ESE	Total
		SEMESTER – I					
	23PZOOC11	Core - I: Structure and functions of Invertebrates	5	7	25	75	100
	23PZOOC12	Core - II: Comparative Anatomy of Vertebrates	5	7	25	75	100
A	23PZOOP13	Core - III: Practical – I (Covering 23PZOOC11 & 23PZOOC12)	4	6	25	75	100
A		Elective – I: Molecules and their interaction relevant to Biology (or)	3	5	25	75	100
	23PZOOE14-2	Medical Entomology					
	23PZOOE15-1 23PZOOE15-2	Elective-II: Biostatistics (or) Toyioology	3	5	25	75	100
	231 ZOOL13-2	Total	20	30			500
		SEMESTER – II					200
	23PZOOC21	Core - IV: Cellular and Molecular Biology	5	6	25	75	100
	23PZOOC22	Core - V: Developmental Biology	5	6	25	75	100
A	23PZOOP23	Core - VI: Practical - II (Covering 23PZOOC21 & 23PZOOC22)	4	6	25	75	100
A		Elective – III: Economic Entomology (or) Biodiversity and Conservation	3	4	25	75	100
		Elective – IV: Research Methodology (or) Basic Biotechnology	3	4	25	75	100
B (i)	22D700926	Skill Enhancement Course (SEC-I):	2	4	25	75	100
	23PZOOS26	Poultry Farming Total	22	30			600

		SEMESTER – III					
	23PZOOC31	Core - VII: Genetics	5	6	25	75	100
	23PZOOC32	Core - VIII: Evolution	5	6	25	75	100
	23PZOOC33	Core - IX: Animal Physiology	5	6	25	75	100
A	23PZOOP34	Core - X: Practical – III: (Covering : 23PZOOC31, 23PZOOC32 & 23PZOOC33)	4	6	25	75	100
	23PZOOE35-1 23PZOOE35-2	Elective – V: Stem Cell Biology (or) Endocrinology	3	3	25	75	100
B (i)	23PZOOS36	Skill Enhancement Course (SEC-II): Dairy Farming	2	3	25	75	100
B (ii)	23PZOO I 37	Summer Internship*	2	-	25	75	100
		Total	26	30			700
		SEMESTER – IV					
	23PZOOC41	Core - XI: Immunology	4	5	25	75	100
	23PZOOC42	Core - XII: Ecology	4	5	25	75	100
A	23PZOOP43	Core – XIII: Practical IV (Covering: 23PZOOC41 & 23PZOOC42)	2	2	25	75	100
	23PZOOD44	Project with Viva-voce	7	10	25	75	100
	23PZOOE45-1 23PZOOE45-2	Elective – VI: Medical Laboratory Techniques (or) Aquaculture and their by-products	3	4	25	75	100
B (i)		Skill Enhancement Course (SEC-					
	23PZOOS46	III): Intellectual Property Rights	2	4	25	75	100
C	23PZOOX47	Extension Activity	1	-	100	-	100
		Total	23	30			700
		Total Credits / Hours	91	120			2500

^{*} Students should complete two weeks of internship before the commencement of III semester.

Credit Distribution

Study Components	Papers	Total Credits	Marks/Sub	Total Marks
Core Theory	9	43	100	900
Core Electives	6	18	100	600
Core Practical	4	14	100	400
Skill Enhancement Courses SEC1, SEC2, SEC3	3	6	100	300
Internship/Industrial Activity (Carried out in Summer Vacation at the end of I Year – Two Weeks Period)	1	2	100	100
Project	1	7	100	100
Extension Activity	1	1	100	100
	25	91		2500

Credit Distribution for PG Science Programme

Part	Course Details	No. of courses	Total Credit
	Core Theory	9	43
A	Core Practical	4	14
	Elective Course	6	18
	Project Work with VIVA-VOCE	1	7
B(i)	Skill Enhancement Course	3	6
B(ii)	Summer Internship	1	2
С	Extension Activity	1	1
		25	91

Component-wise Credit Distribution

Part	Courses	Sem	Sem II	Sem	Sem	Total
		I		III	IV	
	Core (including Practical and	14	14	19	17	64
A	Project)					
	Elective	6	6	3	3	18
B(i)	Skill Enhancement Course	-	2	2	2	6
B(ii)	Summer Internship	-	-	2	-	2
C	Extension Activity	-	-	-	1	1
						91

Part A and B(i) component will be taken into account for CGPA calculation for the post graduate programme and the other components Part B(ii) and C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining PG degree.

Programme Outcomes (Pos)

PO1: Problem Solving Skill

Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.

PO2: Decision Making Skill

Foster analytical and critical thinking abilities for data-based decision-making.

PO3: Ethical Value

Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.

PO4: Communication Skill

Ability to develop communication, managerial and interpersonal skills.

PO5: Individual and Team Leadership Skill

Capability to lead themselves and the team to achieve organizational goals.

PO6: Employability Skill

Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill

Equip with skills and competencies to become an entrepreneur.

PO8: Contribution to Society

Succeed in career endeavors and contribute significantly to society.

PO 9 Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and

a global perspective.

PO 10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.

Programme Specific Outcomes

(PSOs)

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Semester	23PZOOC11: CORE COURSE - I	H/W	C
I	STRUCTURE AND FUNCTIONS OF INVERTEBRATES	7	5

Course Objective:

1	To understand the concept of classification and their characteristic features of major group of invertebrates.
2	To realize the range of diversification of invertebrate animals.
3	To enable to find out the ancestors or derivatives of any taxon.
4	To know the functional morphology of system biology of invertebrates.

UNIT - I: Structure and function in invertebrates: Principles of Animal taxonomy; Species concept; International code of zoological nomenclature; Taxonomic procedures; New trends in taxonomy

UNIT - II: Organization of coelom: Acoelomates; Pseudocoelomates; Coelomates: Protostomia and Deuterostomia; Locomotion: Flagella and ciliary movement in Protozoa; Hydrostatic movement in Coelenterata, Annelida and Echinodermata

UNIT -III: Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan; Filter feeding in Polychaeta, Mollusca and Echinodermata. Respiration: Organs of respiration: Gills, lungs and trachea; Respiratory pigments; Mechanism of respiration

UNIT - IV: Excretion: Organs of excretion: coelom, coelomoducts, Nephridia and Malphigian tubules; Mechanisms of excretion; Excretion and osmoregulation. Nervoussystem: Primitive nervous system: Coelenterata and Echinodermata; Advanced nervous system: Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda); Trends in neural evolution

UNIT -V: Invertebrate larvae: Larval forms of free living invertebrates - Larval forms of parasites; Strategies and Evolutionary significance of larval forms. Minor Phyla: Concept and significance; Organization and general characters

Expected Course Outcomes (CO)

At the end of the course, the student will be able to

1	Remember the general concepts and major groups in animal classification, origin, structure, functions and distribution of life in all its forms.
2	Understand the evolutionary process. All are linked in a sequence of life patterns.
3	Apply this for pre-professional work in agriculture and conservation of life forms.
4	Evaluate and to create the perfect phylogenetic relationship in classification.

TEXT BOOKS

- 1. Arumugam, N., T. Murugan, B. Ramanathan and M.G. Ragunathan. (2019). *A Text Book of Invertebrates*, Saras Publications, Nagercoil, Tamil Nadu.
- 2. Ekambaranatha Ayyar, M. (1973). *A Manual of Zoology Part I: Invertebrata*. S. Viswanathan (Printers and Publishers) Pvt., Ltd. Madras.
- 3. Ekambaranatha Ayyar, M. (1973). *A Manual of Zoology Part II: Chordata*. S.Vishvanathan Printers and Publishers, Pvt. Ltd., Madras.
- 4. Jordan, E. L. and P. S. Verma, (2017). *Chordate Zoology and Elements of Animal Physiology*, S. Chand & Co., Ltd., New Delhi.
- 5. Jordon, E. L. and P.S Verma, (2015). *Invertebrate Zoology*. S. Chand and Co. Ltd., New Delhi.
- 6. Saxena, R.K. and S. Saxena. (2015). *Comparative Anatomy of Vertebrates*, M.V.Learning, UK.
- 7. Wells, H.G. (2018). *Text Book of Biology, Part 1: Vertebrata*, Createspace Publishing Company, USA.

REFERENCE BOOKS

- 1. Arumugam, N. (2014). *Animal diversity Volume 1 Invertebrata*. Saras Publication, Nagercoil, Tamil Nadu.
- 2. Arumugam, N. (2014). *Animal diversity Volume 2 Chordata*. Saras Publication, Nagercoil, Tamil Nadu.
- 3. Barrington E. J. W. (2012). *Invertebrate structure and function*. Affiliated EastWest Press Pvt. Ltd., New Delhi.
- 4. Brusca, R.C., W. Moore and S.M. Shuster. (2016). *Invertebrates*. Oxford University Press, USA.
- 5. Kent, G.C. (2015). *Comparative Anatomy of the Vertebrates*. McGraw Hill, New York.

Outcome Mapping

		\mathbf{N}	Iapping	with Prog	ramme (Outcom	nes*			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	2	3	3	2	2	3	3
CO3	3	2	3	2	3	3	2	2	3	3
CO4	3	2	3	2	3	3	2	2	3	2
CO5	3	2	3	2	3	3	2	2	3	2

*3 - Strong; 2 - Medium; 1– Low

Semester	23PZOOC12: CORE COURSE - II	H/W	С
I	COMPARATIVE ANATOMY OF VERTEBRATES	7	5

Course Objective:

1	Exemplifying the vertebrate origin and the intermediary position of Prochordates between invertebrates and vertebrates.
2	Acquires the knowledge on evolution and adaptive radiation of Agnatha and Pisces.
3	Understanding knowledge about the first terrestrial vertebrates and the adaptive radiation of land animals
4	Imparting conceptual knowledge about the animal life in the air and their behaviours.
5	Understanding the origin and efficiency of mammals and evolutionary changes that occurred in the life of vertebrates.

- **UNIT I:** Origin of vertebrates: Concept of Protochordata; The nature of vertebrate morphology; Definition, scope and relation to other disciplines; Importance of the study of vertebratemorphology
- **UNIT II:** Origin and classification of vertebrates; Vertebrate integument and its derivatives. Development,generalstructureandfunctionsofskinanditsderivatives; Glands, scales, horns, claws, nails, hoofs, feathers andhairs.
- **UNIT -III:** General plan of circulation in various groups; Blood; Evolution of heart; Evolution of aortic arches and portal systems. Respiratory system: Characters of respiratory tissue; Internal and external respiration; Comparative account of respiratory organs
- **UNIT IV:** Skeletalsystem: Form, function, body size and skeletal elements of thebody; Comparative account of jaw suspensorium, Vertebral column; Limbs and girdles; Evolution of Urinogenital system in vertebrateseries
- **UNIT –V:** Senseorgans: Simplereceptors; Organs of Olfaction andtaste; Lateral line system; Electroreception. Nervous system: Comparative anatomy of the brain in relation to its functions; Comparative anatomy of spinalcord; Nerves-Cranial, Peripheral and Autonomous nervous systems

Expected Course Outcomes (CO)

At the end of the course, the student will be able to

1	Understand the morphological features and physiological functions like Respiration, reproduction and nervous system of Vertebrates
2	Understand the various salient features of higher Vertebrates
3	Differentiate the patterns of functioning of various organ systems in vertebrates
4	Know the structural organization and functioning of various organs in Vertebrates.

TEXT BOOKS

- 1. Ekambaranatha Ayyar, M. (1973). *A Manual of Zoology Part II: Chordata*. S. Vishvanathan Printers and Publishers, Pvt. Ltd., Madras.
- 2. Jordan, E. L. and P. S Verma. (2017). *Chordate Zoology and Elements of Animal Physiology*, S. Chand & Co., Ltd., New Delhi.
- 3. Saxena, R.K. and S. Saxena. (2015). *Comparative Anatomy of Vertebrates*, M.V.Learning, UK.
- 4. Wells, H.G. (2018). *Text Book of Biology, Part 1: Vertebrata*, Createspace Publishing Company, USA.
- 5. Young, J.Z. (2004). The life of Vertebrates. Oxford University Press, Oxford

REFERENCE BOOKS

- 1. Arumugam, N. (2014). *Animal diversity Volume-2: Chordata*. Saras Publication, Nagercoil, Tamil Nadu.
- 2. Kent, G.C. (2015). *Comparative Anatomy of the Vertebrates*. McGraw Hill, New York, USA.

Outcome Mapping

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3	2	1	3	2	3	2	3	2	3	
CO2	3	1	1	3	2	3	2	2	2	2	
CO3	3	2	1	3	2	3	2	1	2	2	
CO4	3	1	1	3	1	3	2	1	2	1	
CO5	3	2	1	3	3	3	2	3	2	2	

*3 - Strong; 2 - Medium; 1– Low

Semester	23PZOOP13: CORE COURSE - III	H/W	C
I	PRACTICAL I -	6	4
	INVERTEBRATES & VERTEBRATES		7

Course Objective:

1	Understand the structure and functions of various systems in animals
2	Learn the adaptive features of different groups of animals
3	Learn the mounting techniques
4	Acquire strong knowledge on the animal skeletal system
5	Understand the structure and functions of various systems in animals

INVERTEBRATES

Dissection

Earthworm : Nervous system

Pila : Digestive and nervous systems

Sepia : Nervous system Cockroach : Nervous system

Grasshopper : Digestive system and mouth parts

Prawn : Appendages, nervous and digestive systems

Crab : Nervous system

Study of the following slides with special reference to their salient features and their modes of life

- 1. Amoeba
- 2. Entamoeba histolytica
- 3. Paramecium
- 4. *Hydra* with bud
- 5. Sporocyst Liver fluke
- 6. Cercaria larva
- 7. *Tape worm (Scolex)*
- 8. Ascaris T. S.
- 9. Mysis of prawn

Spotters

- 1. Scorpion
- 2. Penaeus indicus
- 3. Emerita (Hippa)
- 4. Perna viridis

Mounting

: Body setae Earthworm Pila : Radula : Mouth parts Cockroach Grasshopper : Mouth parts

CHORDATES

Study the nervous system of Indian dog shark - Dissection

- 1. Nervous system of *Scoliodon laticaudatus* 5^{th} or Trigeminal nerve 2. Nervous system of *Scoliodon laticaudatus* 7^{th} or Facial nerve 3. Nervous system of *Scoliodon laticaudatus* 9^{th} and 10^{th}

or Glossopharyngeal & Vagus nerve

Study of the following specimens with special reference to their salient features and their modes of life

- 1. Amphioxus sp. (Lancelet)
- Ascidia sp. (sea squirt)
- Scoliodon laticaudatus (Indian dog shark)
- *Trygon* sp. (Sting ray)
- 5. Torpedo sp. (Electric ray)
- Arius maculatus (Cat fish)
- 7. Belone cancila(Flute fish)
- Exocoetus poecilopterus (Flying fish)
- Mugil cephalus (Mullet) 9.
- 10. Tilapia mossambicus (Tilapia)
- 11. Rachycentron canadum (Cobia)
- 12. Tetrodon punctatus (Puffer fish)
- 13. Dendrophis sp. (Tree snake)

Study of the different types of scales in fishes

- 1. Cycloid scale
- 2. Ctenoid scale
- 3. Placoid scale

Study of the frog skeleton system (Representative samples)

- 1. Entire skeleton
- 2. Skull
- 3. Hyoid apparatus
- 4. Pectoral girdle and sternum
- 5. Pelvic girdle
- 6. Fore limb
- 7. Hind limb

Mounting

1. Weberian ossicles of fish

Text Books:

- 1. Lal, S.S. 2009. Practical Zoology, Rastogi Publications, pp-484.
- 2. Iuliis G. D. and D. Pulerà, 2007. The Dissection of Vertebrates: A Laboratory Manual. Academic Press, Imprint of Elsevier Publication, pp-416.
- 3. Verma, P.S. 2000. Manual of Practical Zoology: Chordates, S. Chand Publishing Company, pp-528

Reference Books:

- 1. Preeti, G., and C. Mridula, 2000. Modern Experimental Zoology, Indus International Publication.
- 2. Sinha, J., A. K. Chatterjeee, P. Chattopadhya. 2011. Advanced Practical Zoology, Arunabha Sen Publishers, pp-1070.

Outcome Mapping

	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	3	3	3	2	3	3	2	3	2	3		
CO2	3	2	1	3	2	3	2	2	2	2		
CO3	2	2	1	3	1	3	2	1	2	2		
CO4	3	3	1	3	1	3	2	1	2	1		
CO5	3	3	2	1	2	3	2	3	2	2		

*3 - Strong; 2 - Medium; 1 - Low

ELECTIVE COURSES:

Semester	Elective Course - I :	H/W	C
_	(Generic / Discipline Centric):		
I	23PZOOE14-1: MOLECULES AND THEIR	5	3
	INTERACTION RELEVANT TO BIOLOGY		

Course Objectives (CO):

The main objectives of this course are:

1	To learn the structure, properties, metabolism and bioenergetics of biomolecules
2	To acquire knowledge on various types of enzymes, classification, their mechanism of action and regulation
3	To understand the importance and applications of methods in conforming the structure of biopolymers
4	To know the structural organization of proteins, carbohydrates, nucleic acids and lipids
5	To familiarize the use of methods for the identification, characterization and conformation of biopolymer structures

- **UNIT I:** Basics of biophysical chemistry and biochemistry: Structure of atoms, molecules and chemical bonds Principles of biophysical chemistry (pH, buffer, reaction kinetics, thermodynamics, colligative properties).
- UNIT II: Biomolecular interactions and their properties: Stabilizing interactions (Vander Waals, electrostatic, hydrogen bonding, hydrophobic interaction etc. Composition, structure, metabolism and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins).
- UNIT III: Bioenergetics and enzymology: Bioenergetics, glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isoenzymes
- UNIT IV Structural conformation of proteins and nucleic acids:Conformation of proteins (Ramachandran plot, secondary, tertiary and quaternary structure; domains; motifs and folds)
 Conformation of nucleic acids (A-, B-, Z-DNA), t-RNA, micro-RNA).
- **UNIT V:** Stabilizing interactions in biomolecules:Stability of protein and nucleic acid structures hydrogen bonding, covalent bonding, hydrophobic interactions and disulfide linkage.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Learn the structure, properties, metabolism and bioenergetics of biomolecules
2	Acquire knowledge on various classes and major types of enzymes, classification, their mechanism of action and regulation
3	Understand the fundamentals of biophysical chemistry and biochemistry, importance and applications of methods in conforming the structure of biopolymers
4	Comprehend the structural organization of and proteins, carbohydrates, nucleic acids and lipids
6	Familiarize the use of methods for the identification, characterization and conformation of biopolymer structures

Text Books

- 1. Berg, J. M., J. L. Tymoczko and L. Stryer 2002. Biochemistry. 5th Ed., W.H. Freeman & Co., New York, pp-1050.
- 2. Kuchel P.W. and G. B. Ralston. 2008. Biochemistry. McGraw Hill (India) Private Limited, UP, pp-580.
- 3. McKee T. and J. R. McKee. 2012. Biochemistry: The Molecular Basis of Life. (7th Edition). Oxford University Press, US, pp-793.
- 4. Nelson D.L. and M.M. Cox. 2012. Lehninger's Principles of Biochemistry. (6th Edition). W. H. Freeman Publishers, New York, pp-1158.
- 5. Satyanarayana U. and U. Chakrapani, 2006. Biochemistry. (3rd Edition). Books and Allied (P) Ltd. Calcutta, pp-695.

Reference Books

- 1. Buchanan, B.B., W. Gruissem and R.L. Jones. 2015. Biochemistry and Molecular Biology of Plants. John Wiley and Sons Ltd., UK, pp-1280.
- 2. Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2003. Harper's Illustrated Biochemistry (26th Edition), The McGraw-Hill Companies, Inc., USA, pp-704.
- 3. Palmer, T. 2004. Enzymes. Affiliated East-West Press Pvt. Ltd., New Delhi, pp-416.
- **4.** Voet D. and J.G. Voet. 2011. Biochemistry. (4th Edition). John Wiley & Sons (Asia) Pvt. Ltd., pp-1428.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	S	L	S	M	S	M	M	
CO2	S	S	L	S	S	S	M	M	M	S	
CO3	M	M	M	S	M	S	S	S	S	L	
CO4	S	M	S	M	S	M	S	S	S	M	
CO5	M	S	S	M	M	S	M	L	S	M	

*S - Strong; M - Medium; L-Low

Semester	Elective Course - I:	H/W	С
I	(Generic / Discipline Centric):	5	3
_	23PZOOE14-2: MEDICAL ENTOMOLOGY		

The main objectives of this course are:

1	To acquire Knowledge of the Classification of Arthropod Vector insects in Medical Entomology.
2	To study the life Cycles of Vector Insects.
3	To Learn Various Vector borne diseases - Transmission and Control Measures.

UNIT - 1:Introduction

Scope of Medical Entomology- Classification of Arthropoda. Classification of Arthropods of Medical and Public Health importance. Mechanism of Transmission of diseases by Arthropods - Mechanical and Biological; Metamorphosis - Complete and Incomplete. Insect Mouth Parts - Chewing and Sucking.

UNIT - 2: Mosquitoes and Louse

 $MOSQUITO: \ Morphology-Life\ history,\ vectors-diseases\ transmission-Control\ Measures.$

LOUSE: - Morphology - Life history - Public Health importance - Control Measures

UNIT - 3: Tsetse fly and Sand fly

TSETSE FLY: Morphology - Life history - Public Health importance - Control Measures.

 $SAND\ FLY: \ Morphology-Life\ history-Public\ Health\ importance-Control\ Measures.$

UNIT - 4: Fleas and House fly

FLEAS: Morphology – Life history - Public Health importance – Control Measures.

HOUSE FLY:- Morphology – Life history - Public Health importance – Control Measures.

.UNIT - 5: Ticks and Mites

TICKS: Morphology - Life history - Public Health importance - Control Measures.

 $MITES: Morphology-Life\ history-Public\ Health\ importance-Control\ Measures.$

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Identify insects based on morphological features
2	Start entrepreneurial activities
3	Take up jobs in vector control and public health departments
4	Take up integrated pest management activities

Text Books:

- Tembhare, D.B. (2012). Modern Entomology, Himalaya Publishing House, New Delhi
- 2. Tyagi, B.K. (2012). Medical Entomology, Scientific publishers, Chennai

Reference Book

- Rathanswamy, G.K, (2010). A Hand book of Medical Entomology.
 S.Viswanatham Printers & Private & Ltd., Chennai
- 2. Vasantharaj Devid, and V.V. Ramamurthy, (2011). Elements of Economic Entomology.Namrutha Publications, Chennai -600116

Outcome Mapping

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	L	S	S	S	S	S
CO2	S	S	S	S	L	S	S	S	M	S
CO3	M	S	S	S	L	S	S	S	S	S
CO4	S	S	S	S	L	S	S	S	S	S

*S - Strong; M - Medium; L-Low

Semester	Elective Course - II:	H/W	С
т .	(Generic / Discipline Centric):	5	3
1	23PZOOE15-1: BIOSTATISTICS		

The main objectives of this course are:

1	To understand the importance of analysis of qualitative and quantitative information from biological studies.
2	To acquire skills to perform various statistical analyses using modern statistical techniques and software.
3	To Know the merits and limitation of practical problems in biological/ health management study
4	To propose and implement appropriate statistical design/ methods of analysis.

- UNIT I: Definition, scope and application of statistics; Primary and secondary data: Source and implications; Classification and tabulation of biological data: Types and applications. Variables: Definition and types. Frequency distribution: Construction of frequency, distribution table for grouped data; Graphic methods: Frequency polygon and ogive curve; Diagrammatic representation: Histogram, bar diagram, pictogram and pie chart.
- **UNIT II:** Measures of central tendency: Mean, median and mode for continuous and discontinuous variables. Measures of dispersion: Range, variation, standard deviation, standard error and coefficient of variation.
- **UNIT III:** Probability: Theories and rules; Probability Addition and multiplication theorem; Probability distribution: Properties and application of Normal, Binomial and Poisson distributions.
- UNIT IV: Hypothesis testing: Students 't' test paired sample and mean difference't' tests.
 Correlation: Types Karl Pearson's Co-efficient, Rank correlation, Significance test for correlation coefficients.
- **UNIT V:** Regression analysis: Computation of biological data, calculation of regression coefficient, graphical representation and prediction. Analysis of variance: one way and two way classification.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Clear understanding of design and application of biostatistics relevant to experimental and population studies.
2	Acquired skills to perform various statistical analyses using modern statistical techniques and software.
3	Knowledge on the merits and limitation of practical problems in biological/ health management study as well as to propose and implement appropriate statistical design/

methods of analysis.

Text Books

- 1. Arora, P. N. and P. K. Malhan. 1996. Biostatistics, Himalaya Publishing House, Mumbai, pp-447.
- 2. Gurumani, N. 2005. Introduction to Biostatistics, M.J.P. Publishers, Delhi, pp-407.
- 3. Das, D. and A. Das. 2004. Academic Statistics in Biology and Psychology, Academic Publisher, Kolkata, pp-363.
- 4. Palanichamy, S. and Manoharan, M. 1990. Statistical Methods for Biologists, Palani Paramount Publications, Tamil Nadu, pp-264.

Reference Books

- 1. Bailey, N. T. J. 1959. Statistical in Biology, English Universities Press, London, pp-48.
- 2. Sokal, R. R. and F. J. Rohlf, 1973. Introduction to Biostatistics, W.H. Freeman, London, pp-467.
- 3. Sokal, R.R. and F.J. Rohlf. 1981. Biometry: The principles and practice of statistics in biological research, San Francisco: W.H. Freeman, London, pp-859.
- 4. Zar, J.H. 1998. Biostatistical Analysis, Pearson Education (Singapore) Pvt. Ltd., Delhi, India, pp-660.
- 5. Bailey, N. T. J. 1994. Statistical Methods in Biology (Third Edition), Cambridge University Press, Cambridge, pp-255.
- 6. Wayne W. Daniel. Biostatistics: A Foundation for Analysis in the Health Sciences, John Wiley & Sons Inc, USA, pp-443.
- 7. Snedecor, G. W. and W. G. Cochran. 1967. Statistical Methods (Sixth Edition), Oxford & IBH Publishing Co., New Delhi, pp-593.
- 8. Pagano, M. and K. Gauvreau. 2008. Principles of Biostatistics (Second Edition), Cengage Learning, New Delhi, pp-525.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	L	M	S	S	M	S	M	M
CO2	S	S	S	S	S	S	S	S	S	S
CO3	M	S	S	S	S	S	S	S	S	L
CO4	M	M	S	L	M	M	M	S	L	M
CO5	M	M	S	L	M	S	M	L	S	M

Semester	Elective Course - II :	H/W	С
	(Generic / Discipline Centric):		
I	23PZOOE15-2: TOXICOLOGY	5	3

The main objectives of this course are:

1	To learn the concepts and processes involved in toxicology
2	To understand the various methods to know absorption and distribution of toxicants
3	To study the biotransformation and excretion of toxicants
4	To learn the impacts of toxicants and human beings.
5	To learn the application of antidotes

UNIT - I: Introduction to Toxicology

Definition – Brief history of toxicology– Toxicity methods – Acute toxicity tests – Subacute toxicity test – Chronic toxicity test – Bio-assay – Determination of LC_{50} and LD_{50} – Dose - Response relationship.

UNIT - II: Exposure Route, Absorption and Distribution of Toxicants

Route of exposure of Toxicants: Dermal route – Inhalation route – Ingestion route. Absorption of Toxicants: Introduction – Mechanism of absorption – Passive transport and carrier mediated transport – Factors affecting absorption. Distribution of Toxicants: Membrane barriers.

UNIT - III: Biotransformation and Excretion of Toxicants

Biotransformation: Pattern of Biotransformation - Phase I reaction - Oxidation - Mixed Function Oxidase System - Reduction reaction - Hydrolysis - Phase II reaction - Biochemical conjugation - Glucuronidation - conjugation with Glutathione - Sulphate conjugation - Acetylation and Methylation - Amino acid conjugation - Excretion of Toxicants: Urinary excretion - Biliary excretion.

UNIT - IV: Toxic effects on human

Categories of toxic effects – Local and systemic effects – Reversible and irreversible effects – Immediate and delayed effects - Effects on target organs: Neurotoxic effects – Hepatotoxic effects – Genotoxic effects – mutagenic – Teratogenic – carcinogenic effects.

UNIT - V: Antidotes

Antidotes: Classification of antidotes—Mechanism of action of antidotes-Specific antidotes for metals and pesticides.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

	1	Carry out toxicological analysis of various environmental samples
	2	Make observations and biochemical analysis of biological samples
	3	Carry out toxicological testing using live specimen to determine toxicity of toxicants
ľ	4	Take up jobs in toxicological research institutions and clinical labs

TEXT BOOKS

- 1. Lee, B.M. and S.Kacew. (2018). Lu's Basic Toxicology, Informa Healthcare.
- 2. Sharma, P. D., (1996). *Environmental biology and toxicology*. Rastogi Publication, Meerut, India
- 3. Frank C. Lu (1985). *Lu's Basic Toxicology*. Hemispher Publication Corporation Washington, N.Y. London.
- 4. Gupta, P.K., and Salunka, D.K., (1985). *Modern Toxicology*. Vol. I and II, Metropolitan, New Delhi.
- 5. Pandey, K., J. P. Shukla and S. P. Trivedi. (2013). *Fundamentals of Toxicology*, New Central Book Agency, New Delhi.
- 6. Chris Kent (1998). Basics of Toxicology. John Wiley & Sons. New York

REFERENCE BOOKS

- 1. Vija Byung-Mu Lee, Sam Kacew and Hyung Sik Kim. (2017). *Lu's Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment*. CRC Press, USA.
- 2. Stephen M. Roberts, Robert C. James and Phillip L. Williams. (2015). *Principles of Toxicology: Environmental and Industrial Applications*. Wiley Blackwell.
- 3. Frank A. Barile. (2017). Principles of Toxicology Testing. CRC Press, USA.
- 4. Karen E. Stine and Thomas M. Brown. (2015). Principles of Toxicology. CRC Press, USA.
- 5. Barile, F.A. (2013). *Principles of Toxicology Testing*, CRC Press.
- 6. Kamaleshwar Pandey, J. P. Shuikla and S. P. Trivedi. (2011). *Fundamentals of Toxicology*. New Central Book Agency, New Delhi.

	Mapping with Programme Outcomes*									
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	L	M	S	S	M	S	M	M
CO2	S	S	S	S	S	S	S	S	S	S
CO3	M	S	S	S	S	S	S	S	S	L
CO4	M	M	S	L	M	M	M	S	L	M
CO5	M	M	S	L	M	S	M	L	S	М

*S - Strong; M - Medium; L- Low

Semester	23PZOOC21: CORE COURSE - IV	H/W	C
II	CELLULAR AND MOLECULAR BIOLOGY	6	5

Course Objective:

1	To understand the molecular basis of cell structure and functions
2	To learn the structure and functions of various organization and cell membrane.
3	To learn bioenergetics and biogenesis
4	To learn structure and replication of DNA
5	To learn various molecular techniques

UNIT - I: General features of the cell: Basic structure of prokaryotic and eukaryotic cells - Protoplasm and deutroplasm - cell organelles; cell theory; Diversity of cell size and shapes.

UNIT - II Cellular organization: Membrane structure and functions - Structure of model membrane, lipid bilayer and membrane proteins diffusion, osmosis, ion channels, active transport, ion pumps, mechanism and regulation of intracellular transport, electrical properties of membranes. Structure and functions of Intracellular organelles: Nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles and chloroplasts.

UNIT - III Cell division and Cell cycle: Mitosis and meiosis, their regulation, steps in cell cycle and control of cell cycle. Molecular biology of cell: Structure of DNA and RNA; Process of DNA replication, transcription and translation in pro- and eukaryotic cells; Genetic maps.

UNIT - IV: Cell communication and cell signalling: Membrane- associated receptors for peptide and steroid hormones - signalling through G-protein coupled receptors, signal transduction pathways. General principles of cell communication: extracellular space and matrix, interaction of cells with other cells and non-cellular structures

UNIT - V: Cancer cells: Characteristic features of normal and cancer cells; Carcinogens: types and cancer induction; Metastasis; Oncogenes and tumor suppressor genes, apoptosis; therapeutic interventions of uncontrolled cell growth.

Expected Course Outcomes (CO)

At the end of the course, the student will be able to

1	Acquire knowledge on cellular structure and functions.
2	Understand the process of energetic and genesis in cells
3	Interpret the structural and functional significances of DNA and RNA
4	Take up jobs in molecular biology labs and clinical labs

TEXT BOOKS

- 1. De Robertis E.D.D and De. Robertis E.M.F. (2017). *Cell and Molecular Biology*. Lippincott Williams & Wilkins , USA.
- 2. Pollard, T.D., W.C. Earnshaw, J.L. Schwartz and G. Johnson. (2017). *Cell Biology*, Elsevier.
- 3. Verma P.S. and V.K. Agarwal, (2015): *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*, S. Chand and Company, New Delhi.
- 4. Gupta. P.K., (2003). Cell and Molecular Biology, Rastogi Publication, Meerut, India.
- 5. Lodish. H, Berk. A, Zipursky. SL, Matiudaira. P, Baltimore. D and Darnell J. (2000). *Molecular Biology of the cell*, W.H. Freeman and company, New York.
- 6. Lewin.B, (2000). Gene VII, Oxford University Press, London.

REFERENCE BOOKS

- 1) Verma P.S. and V.K. Agarwal. (2016). *Cell Biology*. S. Chand & Co., New Delhi.
- 2) Arnold Berk, Chris A. Kaiser and Harvey Ledish. (2016). *Molecular Cell Biology*. WH Freeman, USA.
- 3) Malathi, V. (2012). Essentials of Biology. Pearson Education, Chennai, India.
- 4) Bruce Alberts, Alexander D. Johnson and Julian Lewis. (2014). *Molecular Biology of the Cell*. W.W. Norton & Co., USA.
- 5) Geoffrey M.Cooper and Robert E. Hausman. (2013). *The Cell: A Molecular Approach*. Sinauer Associates Inc., USA.

Outcome Mapping

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	1	1	1	3	3	3	2	2	2
CO2	2	2	2	3	3	3	3	2	3	2
CO3	3	3	3	2	2	3	2	2	1	3
CO4	2	2	3	1	3	3	1	2	3	3
CO5	3	2	2	3	3	3	3	2	3	3

*3 - Strong; 2 - Medium; 1-Low

Semester	23PZOOC22: CORE COURSE - V	H/W	C
II	DEVELOPMENTAL BIOLOGY	6	5

Course Objective:

1	Define the concepts of embryonic development
2	Observe various stages of cell divisions under microscope
3	Understand the formation of zygote
4	Differentiate the blastula and gastrula stages
5	Learn the distinguishing features of three different germ layers and formation of various tissues and organs

UNIT - I Pattern of animal development: Chief events in animal development; History of thoughts and conceptual developments. Gametogenesis: Origin of germ cells, spermatogenesis - Sperm morphology in relation to the type of fertilization, Oogenesis - Oogenesis in insects and amphibians; Composition and synthesis of yolk in invertebrates (insects and crustaceans) and vertebrates; Genetic control of vitellogenin synthesis in amphibians

UNIT - II: Fertilization: Sperm aggregation, Sperm activation, Chemotaxis, Sperm maturation and capacitating in mammals, Acrosome reaction. Sperm – egg interaction. Sperm entry into the egg - Egg activation - Intracellular calcium release - Cortical reaction - Physiological polyspermy - Fusion of male and female pronuclei - Post fertilization metabolic activation – Parthenogenesis

UNIT - III: Cleavage and gastrulation: Pattern of embryonic cleavage, mechanisms of cleavage, mid blastula transition - Determinate and regulatory embryos, Factors affecting gastrulation, mechanisms and types of gastrulation in respective animal embryos (Sea urchin, *Amphioxus*, Amphibians, Aves, Mammals); Fate maps - (Amphibian and Chick), Epigenesis and preformation – Formation of primary germ layers.

UNIT – IV: Embryonic Development; Embryonic development of fish and birds, formation of extra embryonic membranes in mammalian – Organogenesis - Development of endodermal, mesodermal and ectodermal derivatives. Embryonic Induction and neurulation; Formation and migration of neural crest cells - types of neural crest cells and their patterning - primary and secondary neurulation. Gene and development; Anterior- posterior axis in determination in drosophila, Maternal effect genes - *Bicoid* and *Nanos* proteins; Generation of dorsal - ventral polarity- Genetic control of segmentation – Gap genes; pair rule genes; Homeotic genes

UNIT - V: Post embryonic development metamorphosis: Endocrine control of metamorphosis in insect and amphibian - Endocrine control of moulting and growth in crustaceans and insects - Neoteny and pedogenesis. Regeneration: Formation of ectodermal cap and regeneration blastema - Types of regeneration in planaria, Regenerative ability in different animal groups, Factors stimulating regeneration - Biochemical changes assosciated with regeneration. Aging and

senescences: Biology of senescences- cause of aging- mechanism involved in apoptosis. Experimental Embryology: Mammalian reproduction: Mammalian reproductive cycle, Hormonal regulation, Endocrine changes associated with normal pregnancy, Induced ovulation in humans – Cryopreservation of gametes/embryos - Ethical issues in cryopreservation

Expected Course Outcomes (CO)

At the end of the course, the student will be able to

1	Acquire knowledge on reproduction and development
2	Understand process of fertilization
3	Understand the whole process of embryogenesis
4	Acquisition of skills in common methods and practices followed in developmental biology related laboratory activities and Take up jobs in fertility clinics and research labs

TEXT BOOKS

- 1. Verma, P.S. and V.K. Agarwal. (2017). *Chordate Embryology (Developmental Biology)*, S. Chand and Co., New Delhi.
- 2. Arora, P. Mohan, (2014). *Embryology*, Himalaya publishing House, New Delhi.
- 3. Arumugam, N. (2014). *A Text Book of Embryology (Developmental Biology)*, Saras Publications, Nagercoil, Tamil Nadu.
- 4. Balinsky, B.I. (2012). *An Introduction to embryology*, 4th Edition, Saunder's College Publishing Ltd, New York
- 5. Philip Grant (1977). Biology of development systems, University of Oregon
- 6. Berrill, N.J., and G. Karp. (1978). *Development Biology*, Tata McGraw Hill Publishing Co., Ltd, New Delhi

REFERENCE BOOKS

- 1) Madhavan K. S. (2018). Developmental Biology. Arjun Publishing House.
- 2) Subhadra Devi, V. (2018). *Inderbir Singh's Human Embryology*, Jaypee Brothers Medical Publishers, New Delhi.
- 3) Berry A.K. (2016). An Introduction to Embryology. Emkay Publications, New Delhi.
- 4) Lewis Wolpert, Cheryll Tickle and Alfonso Martinez Arias. (2015). *Principles of Development. Oxford University Press*, USA.
- 5) Jain P.C. (2013). Elements of Developmental Biology. Vishal Publishing Co., Punjab.
- Carlson, B.M. (2014). Pattens foundations of Embryology, McGraw Hill
 Sastry K.V. and Vinita Shukal. (2012). Developmental Biology. Rastogi Publication, Meerut, Uttar Pradesh.

Outcome Mapping

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3	3	2	3	3	1	3	2	1	2	
CO2	3	3	3	3	3	1	3	3	3	3	
CO3	3	2	3	3	3	3	3	1	1	2	
CO4	3	3	3	3	3	2	3	3	3	1	
CO5	3	3	3	2	3	3	3	1	1	2	

*3 - strong; 2 - Medium; 1 – Low

	23PZOOP23: CORE COURSE – VI	H/W	C
Semester	PRACTICAL II –		
II	CELLULAR AND MOLECULAR BIOLOGY AND DEVELOPMENTAL BIOLOGY	6	4

Course Objective:

1	Acquire knowledge to differentiate the cells of various living organisms and become aware of physiological processes of cells e.g. cell divisions, various stages of fertilization
	and embryo development.
2	Understand and observe as well as correctly identify different cell types, cellular structures using different microscopic techniques.
3	Develop handling - skills through the wet-lab course.
4	Learn the method of culturing of <i>Drosophila</i> and identification of their wild and mutant strains
5	Acquire skills to perform human karyotyping and chromosome mapping to identify abnormalities

CELLULAR AND MOLECULAR BIOLOGY

- 1. Determination of cell size using micrometer
- 2. Mitosis in root meristematic cells of plants
- 3. Identification of various stages of meiosis in the testes of grasshopper
- 4. Detection of polytene chromosome in salivary gland cells of the larvae of the Chironomus
- 5. Detection of sex chromatin
- 6. Identification of blood cells in the haemolymph of the of the cockroach
- 7. Isolation of genomic DNA from eukaryotic tissue
- 8. Isolation of total RNA from bacterial cells/tissues
- 9. Agarose gel electrophoresis of DNA
- 10. SDS-Polyacrylamide gel electrophoresis

DEVELOPMENTAL BIOLOGY

Gametogenesis - Observation of gametes from gonadal tissue sections

- i. Oogenesis:
- ✓ Section through ovary of shrimp, fish, frog and mammals
- ii Spermatogenesis:
 - ✓ Section through testis of shrimp, fish, calotes and mammals

Fertilization

- iii Induced spawning in polycheate worm *Hydroids elegans*
- iv In vitro fertilization and development in a polycheate worm Hydroids elegans
- V Observation of egg developmental stages in *Emerita emeritus*

Embryogenesis

- vi Observation and whole mount preparation of the chick blastoderm 18 hours of development
- vii Chick embryonic stage 24 hours of development
- viii Chick embryonic stage 48 hours of development
- ix Chick embryonic stage 72 hours of development
- x Chick embryonic stage 96 hours of development

Histological observation: Section through various developmental stages in chick embryo

Experimental Embryology

Regeneration in Frog Tadpoles

- xi Blastema formation
- xii Demonstration of regenerative process in tadpole

Metamorphosis

xiii Demonstration of metamorphosis in Frog Tadpole using exogenous Iodine Cryopreservation

xiv Demonstration of cryopreservation of gametes of fin fish/shell fish

Outcome Mapping

	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	3	2	3	3	3	3	3	1	1	2		
CO2	3	3	3	3	3	2	2	2	2	2		
CO3	3	3	2	3	3	1	3	2	1	2		
CO4	2	2	1	2	1	2	2	3	2	1		
CO5	3	3	2	1	3	2	1	3	3	3		

*3 - Strong; 2 -Medium; 1-Low

Semester	Elective Course - III:	H/W	С
II	(Generic / Discipline Centric): 23PZOOE24-1: ECONOMIC ENTOMOLOGY	4	3

The main objectives of this course are:

1	To understand taxonomy, classification and life cycle of insects.
2	To know the method of rearing and management of diseases of beneficial insects.
3	To know the type of harmful insects, and their damage potential
4	To recognize insects which act as vectors causing diseases in animals and human.

- **UNIT I:** Basic morphological concepts Insect taxonomy upto orders salient features withsuitable examples of the insect orders Odonata, Orthoptera, Coleoptera, Lepidoptera and Diptera. Elementary knowledge on insect system and function.
- **UNIT II:** Beneficial insects: Silkworm types,life history, disease management and rearing methods types of honey bees, life history, social organization, structural adaptation and beehive. Lac insects life history, lac cultivation.
- UNIT III: Destructive insects: Insect pests definition categories of pests types of damage to plants by insects – causes of pest outbreak – Economic threshold level – Biology of Paddy, cotton, sugarcane pests.
- UNIT IV:Pest management/Control strategies:Methods and principles of pest control Natural control, Artificial control, Merits and demerits or limitations of these methods in pest control Development and uses of pest resistant plant varieties Integrated pest management Concepts and practice.
- **UNIT V:** Vector biology and control: Vectors of veterinary and public health importance Mosquitoes as potential vectors of human diseases-control measures.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Understand taxonomy and classification of insects
2	Know the life cycle, rearing and management of diseases of beneficial insects.
3	Know the type of harmful insects, life cycle, damage potential and management of pests
	including natural pest control
4	Recognize insects which act as vectors causing diseases in animals and human.
5	Overall understanding on the importance of insects in human life.

Test Books

- 1. Ayyar, L.V. R. 1936. Hand book of Economic Entomology for South India. Narendra Publishing House. New Delhi, pp- 528.
- 2. Vasantharaj David, B. and V.V. Ramamurthy. 2016. Elements of Economic Entomology, Eighth Edition, Brillion Publishing, New York, pp-400.
- 3. Ross. H.H. 1965. A Text Book of Entomology, John Wiley & Sons Inc., New York, pp-746.

Reference Books

- 1. Chapman, R.F., S.J. Simpsonand A.E.Douglas. 2012. The Insects: Structure and Function, Fifth Edition, Cambridge University Press, pp-959.
- 2. Imms, A.D., O.W.Richards and R.G. Davies (Eds.) IMMS' General Textbook of Entomology, Volume I: Structure, Physiology and Development, pp-418; Volume 2: Classification and Biology, pp-934, Springer Netherlands.
- 3. Daly, H.V., J.T. Doyen and P.R. Ehrlich. 1978. Introduction to Insect Biology and Diversity. Mc Graw-Hill Kogakusha Ltd., Tokyo, pp-564.
- 4. Hill, D.S. 1974. Agricultural Insect Pests of the Tropics and Their Control. Cambridge University Press, New York, pp-746.
- 5. Krishnaswami, S. 1973. Sericulture Manual, Vol. I & II, Silkworm rearing, FAO Agricultural Science Bulletin, Rome.
- 6. Mani, M.S. 1982. General Entomology. Oxoford & IBH Publishing Co., pp-912.
- **7.** Wigglesworth, V.B. 1972. The Principles of Insect Physiology, ELBS & Chapman and Hall, London, pp-827.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	S	M	M	M	S	L	M	
CO2	S	S	M	S	S	S	S	S	S	L	
CO3	S	M	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	M	S	M	M	
CO5	S	S	S	M	M	S	M	L	S	M	

*S - Strong; M - Medium; L-Low

Semester	Elective Course - III:	H/W	С
II	(Generic / Discipline Centric): 23PZOOE24-2: Biodiversity and Conservation	4	3

The main objectives of this course are:

1	To make students to realize the structure and function of ecosystem.
2	To make students to realize the wealth of our natural resources
3	To make students to realize the conservation measures to be taken
4	To make students to realize to create awareness of the laws governing environment.

Unit – I: Ecosystem

Composition of atmosphere – structure and stratification of atmosphere - Hydrological cycle-kinds of ecosystem-structure and functions of ecosystem-energy flow in ecosystem-trophic levels

Unit – II: Natural Resources and Conservation

Types of resources-conventional and non- conventional sources of energy-conservation of soil, land and forest - Deforestation and Afforestation - Conservation strategies (WCS &NCS) - Wild life management in India.

Unit – III: Air and Water Pollution

Air pollution-types of air pollutants-classification and effect of pollutants on vegetation, farm animals and human health-prevention and control of air pollution.

Water pollution-sources of water pollution-water quality standards – Eutrophication-prevention and control of water pollution.

Unit – IV: Radiation, Noise and Industrial Pollution

Radiation pollution-sources and effects of ionizing radiation.

Noise pollution – sources of noise pollution – effects of noise pollution – control measures. Pollution control and abatement on cement industry – leather industry – textile industry.

Unit – V: Environmental Impact Assessment and Law

The objective of Environmental Impact Assessment (EIA) – Environmental Appraised Committee (EAC) – The Environmental Management Plan (EMP) – Control of Environmental pollution through law – Environmental Protection Act (1986).

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Realize the structure and function of ecosystem.
2	Understand the wealth of our natural resources
3	Know the methods of conservation of natural resources
4	Create awareness of the laws governing environment.

Text Books

- 1. Sharma.P.D., 1995. Environmental Biology and Toxicology. Rastogi and Company, Meerut, India.
- 2. Trivedi P.R.,& Gurdeepraj., 1992. Environmental Biology. Akashdeep Publishing House, New Delhi.
- 3. Pal, B.P.,1982 Environmental Conservation and Development, Nataraj Publishers, Dehra Dun, India.
- 4. Agarwal, K.C., 1989. Environmental Biology. Agro Botanical Publishers, India.

Reference Books

- 5. Trivedi, P.R.& Gurdeepraj., 1992. Water Pollution. Akashdeep Publishing house, New Delhi.
- 6. Break Mely, W.1980. Chemicals in the Environment. Marshal Dokker INC Newyork.
- 7. Irving Sax, N.1974. Industrial Pollution. Van Nostrand Raingold Co., Newyork.
- 8. Pandey G.N.& G.C.Carney, 1989. Environmental Engineering. Tata McGraw-Hill Publishing Co., Ltd.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	M	M	S	L	M
CO2	S	S	M	S	S	S	S	S	S	L
CO3	S	M	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	M	S	M	M
CO5	S	S	S	M	M	S	M	L	S	M

*S - Strong; M - Medium; L-Low

Semester	Elective Course - IV:	H/W	С
П	(Generic / Discipline Centric):	4	3
	23PZOOE25-1 : RESEARCH METHODOLOGY		

The main objectives of this course are:

1	To understand the Good Laboratory Practices
2	To learn the working principles of different instruments
3	To gain the knowledge on techniques of histology and histochemistry
4	To acquire knowledge on the basic principle and application of various modules of light and electron microscopy

- **UNIT I:** Good laboratory practice (GLP) pH, Electrodes and pH meter Colorimeter and Spectrophotometry
- **UNIT II:** Histology, Histochemistry, Bioinformatics and Electron microscopy.
- **UNIT III:** Light Microscopy, Bright field, Phase contrast, DIC & Fluorescence microscopy, wide field and Confocal microscopy.
- **UNIT IV:**Centrifuges, Chromatography, Electrophoresis, HPLC, GC-MS, PCR, ELISA and blotting
- **UNIT V:** Principles and Applications of tracer techniques in biology, Animal cell culture techniques.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Understand the implications of GLP			
2 Learn the working principles of different instruments				
3	Gain the knowledge on techniques of histology and histochemistry			
4	Acquire knowledge on the basic principle and application of various modules of light and electron microscopy			

Text Books

- 1. Pearse, A.G. 1968. Histochemistry: Theoretical and Applied, Vol. I, Third Edition, J & A Churchill Ltd, pp-758.
- 2. Lillie, R.D. 1954. Histopathologic Technic and Practical Histochemistry, Second Edition, Blakiston, New York, pp-715.
- 3. Hoppert, M. 2003. Microscopic Techniques in Biotechnology, Wiley-VCH GmbH, Weinheim, Germany, pp-330.

Reference books

- 1. Chandler, D.E. and Roberson R.W. 2009. Bioimaging: Current Concepts in Light and Electron Microscopy, Jones and Bartlet Publishers, Sudbury, MA, USA, pp440.
- **2.** Engelbert, B. 1960. Radioactive Isotopes in Biochemistry, Elsevier Applied Science, pp-376.
- 3. Wolf, G. 1964. Isotopes in Biology, Academic Press, pp-173.
- 4. Srivastava, B. B. 2005. Fundamentals of Nuclear Physics, Rastogi Publications, pp-500.
- 5. Pantin, C. F. A. 1948. Microscopical Techniques, Cambridge University Press, London.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	S	M	S	M	M
CO2	S	S	M	S	S	S	M	M	M	S
CO3	S	M	S	S	S	S	S	S	S	L
CO4	S	S	S	S	S	M	S	S	S	M
CO5	S	S	S	M	M	S	M	L	S	M

*S - Strong; M - Medium; L-Low

Semester	Elective Course - IV:	H/W	С
	(Generic / Discipline Centric):		
II	23PZOOE25-2: BASIC BIOTECHNOLOGY	4	3

The main objectives of this course are:

1	To learn the basic concepts in biotechnology
2	To learn the various techniques used in biotechnology
3	To acquire biotechnological knowledge related to medical, agricultural and environmental disciplines

UNIT - I: Introduction

Definition – Scope – Achievements of Biotechnology – Enzymes in genetic engineering - Restriction Enzymes, DNA ligase, DNA polymerase of Cloning vectors – Plasmids-Bacteriophage, Cosmids, Yeast plasmids.

UNIT - II: Techniques in Biotechnology

Southern blotting, Northern blotting, Western blotting, In-situ hybridization, DNA sequencing, PCR, DNA finger printing.

UNIT - III: Medical Biotechnology

rDNA Technology - Insulin, Somatotrophin, Somatostatin - hormone production, vaccines, interferons, gene therapy, monoclonal antibodies, Human Genome Project (HGP).

UNIT - IV: Agricultural Biotechnology

Micropropagation, protoplast culture, Biofertilizers - Symbiotic and Non symbiotic nitrogen fixation, Biopesticides - Transgenic plants and animals.

UNIT - V: Microbial and Environmental Biotechnology

Bioreactor, primary metabolites – Vitamins, alcohols, Secondary metabolites – Antibiotics, Toxins, Microbial enzyme production – amylase. Bioremediation, Microbial leaching.

Expected Course Outcome (CO)

On the successful completion of the course, student will be able to:

1	Gain knowledge on the principles of biotechnology									
2	Know various experiments related to biotechnology									
3	Carry out biotechnological applications in the fields of medicine, agriculture and environmental fields									
4	Equip themselves to take up jobs in various biotechnological companies and labs									

TEXT BOOKS

- 1. Dubey. R. C., (2018). *A Text Book of Biotechnology*. S. Chand & Co. Ltd., New Delhi.
- 2. Lohar, P.S. (2014). *Text Book Of Biotechnology*, MJP Publishers, Chennai, Tamil Nadu.
- 3. Glick, B.R. and C.L Patten. (2018). *Molecular Biotechnology: Principles and Applications of Recombinant DNA*, ASM Pres, USA.
- 4. Clark, D.P. and N.J. Pazdernik. (2017). *Biotechnology*, Academic Cell.
- 5. Lohar, P.S. (2017). *Biotechnology*, MJP Publishers, Chennai, Tamil Nadu.
- 6. Gupta. P. K., (2009). *Elements of Biotechnology*. Rastogi & Company, Meerut.
- 7. Purohit, S. S. (2007). *Biotechnology, Fundamentals and Applications*. Agrobios, New Delhi.

REFERENCE BOOKS

- 1. Bernard R. Glick and Chery L Patten. (2017). *Molecular Biotechnology*. Taylor & Francis.
- 2. William J. Thieman and Michael A. Palladino. (2014). *Introduction to Biotechnology*. Pearson.
- 3. Singh B. D. (2015). Biotechnology: Expanding Horizons. Kalyani.
- 4. Dubey R. C. (2014). Advanced Biotechnology. S Chand & Co., New Delhi.
- 5. Pratibha Nallari and V. Venugopal Rao. (2010). *Medical Biotechnology*. Oxford University Press, USA.
- 6. Kumarsan, V. and N. Arumugam. (2016). *Fundamentals of Biotechnology*, Saras Publications, Nagercoil, Tamil Nadu.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	S	M	S	M	M
CO2	S	S	M	S	S	S	M	M	M	S
CO3	S	M	S	S	S	S	S	S	S	L
CO4	S	S	S	S	S	M	S	S	S	M
CO5	S	S	S	M	M	S	M	L	S	M

*S - Strong; M - Medium; L-Low

SKILL ENHANCEMENT COURSES:

Semester	SEC – I	H/W	С
II	23PZOOS26 : POULTRY FARMING	4	2

Course Objectives (CO):

The main objectives of this course are:

1	To understand the various practices in Poultry farming.
2	To know the needs for Poultry farming and the status of India in global market.
3	To apply the techniques and practices needed for Poultry farming.
4	To know the challenges in Poultry farming

- **UNIT I:** General introduction to poultry farming Definition of Poultry Past and present scenario of poultry industry in India Principles of poultry housing Poultry houses Systems of poultry farming
- **UNIT II:** Management of chicks growers and layers Management of Broilers. Preparation of project report for banking and insurance
- **UNIT III:** Poultry feed management-Principles of feeding, Nutrient requirements for different stages of layers and broilers Feed formulation and Methods of feeding.
- **UNIT IV:** Poultry diseases-viral, bacterial, fungal and parasitic (two each); symptoms, control and management; Vaccination programme.
- **UNIT V:** Selection, care and handling of hatching eggs Egg testing. Methods of hatching.-Brooding and rearing -. Sexing of day-old chicks. Farm and Water Hygiene Recycling of poultry

Expected Course Outcomes (CO)

At the end of the course, the student will be able to

1	Understand the various practices in Poultry farming.
2	Know the status of Poultry farming.
3	Apply the techniques and practices needed for Poultry farming.
4	Know the difficulties in Poultry farming and be able to propose plans against it.

Text Books:

- 1. Sreenivasaiah., P. V., 2015. Textbook of Poultry Science. 1st Edition. Write & Print Publications, New Delhi 2.
- 2. Jull A. Morley, 2007. Successful Poultry Management. 2nd Edition. Biotech Books, New Delhi"
- 3. Hurd M. Louis, 2003. Modern Poultry Farming. 1st Edition. International Book Distributing Company, Lucknow."
- 4. Life and General Insurance Management"

Reference Books:

- 1. Ismail, S.A., 1997. Vermitechnology, The biology of earthworms, Orient Longman, India.
- 2. http://www.asci-india.com/BooksPDF/Small%20Poultry%20Farmer.pdf
- 3 .https://nsdcindia.org/sites/default/files/MC_AGR-Q4306_Small-poultry-farmer-.pdf
- 4. http://ecoursesonline.iasri.res.in/course/view.php?id=335
- 5. https://swayam.gov.in/nd2_nou19_ag09/preview

			Mapp	ing witl	h Progra	amme O	utcome	s*		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	1	1	1	1	3	3	1	1
CO2	3	1	2	2	3	2	2	2	3	3
CO3	3	2	2	2	3	3	3	3	2	2
CO4	3	3	3	1	3	3	3	3	3	3
CO5	3	3	2	3	3	3	2	1	3	2

*

*S - Strong; M - Medium; L - Low

SECOND YEAR

Core-VII		Credit	5
II Year	23PZOOC31: GENETICS	Hours/ Week	6
III Semester		VVCCIX	

Learning Objective (LO):

LO1	Explain the organization and functions of genetic material in the living system.
LO2	Understand various sequential processes in protein synthesis
LO3	Explicate the structures and functions of chromosomes and identify the diseases caused by the chromosomal abnormalities.
LO4	Able to distinguish lytic and lysogenic cycle and explain the mechanisms of genetic recombination of the microbes.
LO5	Understand the principle and application of rDNA technology for the welfare of human being.

- **UNIT I:** Structure, properties and functions of genetic materials: DNA as the genetic Materials Basic structure of DNA and RNA, alternate and unusual forms of DNA Physical and Chemical properties of nucleic acid, base properties, denaturation and renaturation, Tm and cot values, hybridization.
- **UNIT II:** Genetic code Methods of deciphering the genetic code and general features of the code word dictionary. Chromosomal genetics: Molecular structure of chromosomes Variation in chromosome number and structure Chromosome nomenclature Chromosomal syndromes.
- **UNIT III**: Microbial Genetics: Genetics of Virus Viral chromosome, Lytic cycle, Lysogenic cycle Bacterial genetics -Bacterial genome Gene transfer mechanisms in bacteria and virus conjugation, transduction and transformation
- **UNIT IV:** Recombinant DNA technology: Recombinant DNA technology Overview Tools for Recombinant DNA Technology Vectors types Techniques used in recombinant DNA technology generation of DNA fragments Restriction endonucleases, DNA modifying enzymes, Ligases
- **UNIT V:** Introduction of rDNA into host cell calcium chloride mediated gene transfer Agrobacterium mediated DNA transfer, electroporation, microinjection, liposome fusion, particle gun bombardment Selection and screening of transformed cells Expression of cloned gene; Application of rDNA technology in human welfare Environment, Medicine and Agriculture

Course Outcomes (CO) At the end of the course, the student will be able to

CO1	Interpret phenotypic expressions based on genotype
CO2	Understand and interpret genetically linked diseases
CO3	Perform blood group analysis and test metabolic disorders
CO4	Working in clinical laboratories and take up researches

TEXT BOOKS

- 1. Snustad, D.P. and M. J. Simmons. (2017). *Principles of Genetics*, John Wiley & Sons Inc., India.
- 2. Verma P. S. and V. K. Agarwal, (2015). *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*, S. Chand and Company, New Delhi.
- 3. Jocelyn E. Krebs, Elliott S. Goldstein and Stephen T. Kilpatrick. (2015). *Lewins's Genes XI*, Jones and Bartlett Publishers, Inc., USA.
- 4. Karvita B. Aluwalia, (1991). Genetics, Wiley Eastern Ltd., New Delhi.
- 5. Robert H. Tamirin, (2004). *Principles of Genetics*, Tata McGraw-Hill Publishing Company Ltd. New Delhi.
- 6. Sarin, C., (1990). *Genetics*, Tata McGraw-Hill Publishing Co. Ltd, New Delhi.

REFERENCE BOOKS

- 1. Gangane S. D. (2017). *Human Genetics*. Elsevier, India.
- 2. Robert Tamarin. (2017). *Principles of Genetics*. McGraw Hill, New York, USA.
- 3. James D. Watson, A. Baker Tania and P. Bell Stephen. (2017). *Molecular Biology of the Gene*. Pearson, UK.
- 4. Weaver, R.F. and P.W.Hedrick. (2015). *Genetics*, Brown (William C.) Co., U.S.
- 5. William S. Klug, Michael R. Cummings and Chariotte A. Spencer. (2016). *Concept of Genetics*. Pearson, UK.
- 6. Peter D. Snustad and Michael J. Simmons. (2011). *Genetics*. John Wiley & Sons, India.

Outcome Mapping

		N	Iapping	with Prog	gramme	Outcon	ne3*			
CO3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	1	3	3	3	1	2	3
CO2	3	2	2	2	3	2	2	2	1	3
CO3	2	3	1	1	2	3	2	1	3	1
CO4	3	2	3	2	2	3	3	3	3	3
CO5	3	3	3	2	Е	3	2	3	2	2

*3 - Strong; 2 - Medium; 1 - Low

		Credit	5
Core-VIII	23PZOOC32: EVOLUTION		
II Year		Hours/	6
III		Week	
Semester			

LO1	To understand the concept of evolution. It provides a comprehensive account of evidences to support concept of evolution and different theories for exploring the mechanism of evolution.
LO2	Study the origin of eukaryotic cells; Evolution of unicellular eukaryotes; Anaerobic metabolism, photosynthesis and aerobic metabolism.
LO3	Understand the major events in the evolutionary time scale; Origins of unicellular and multi-cellular organisms.
LO4	Comprehend the origin of new genes and proteins; Gene duplication and divergence.
LO5	Appreciate the concepts and rate of change in gene frequency through natural selection, migration and random genetic drift

UNIT - I: Emergence of evolutionary thoughts: Lamarck and Darwin – concepts of variation, adaptation, struggle, fitness and natural selection – Mendelism - Spontaneity of mutations - The evolutionary synthesis

UNIT – **II:** Origin of cells and unicellular evolution: Origin of basic biological molecules - Abiotic synthesis of organic monomers and polymers - Concept of Oparin and Haldane - Experiment of Miller (1953) - The first cell - Evolution of prokaryotes - Origin of eukaryotic cells - Evolution of unicellular eukaryotes - Anaerobic metabolism, photosynthesis and aerobic metabolism

UNIT – III: Paleontology and evolutionary history: The evolutionary time scale - Eras, periods and epoch - Major events in the evolutionary time scale - Origins of unicellular and multi cellular organisms - Stages in primitive evolution including *Homo sapiens*

UNIT – IV: Molecular evolution: Molecular divergence - Molecular tools in phylogeny, classification and identification - Protein and nucleotide sequence analysis - Origin of new genes and proteins - Gene duplication and divergence

UNIT - V: The mechanisms: Population genetics - Populations, Gene pool, Gene frequency - Hardy-Weinberg Law - concepts and rate of change in gene frequency through natural selection, migration and random genetic driftb-Adaptive radiation - Isolating mechanisms — Speciation - Allopatricity and Sympatricity - Convergent evolution - Sexual selection - Co-evolution - Altruism and evolution

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Analyse the evolutionary history of biological organisms
CO2	Critically assess the evolutionary relationship among various phyla
CO3	Identify the role of natural selection in the survival of the species
CO4	Understand the various mechanisms involved in evolution.

Text book:

- 1. Carl T. Bergstrom, and Lee Alan Dugatkin, (2016). *Evolution (Second Edition)*, W.W. Norton and company, New York, USA.
- 2. Hall, B.K. and B.Hallgrimson. (2014). *Strickbergers Evolution*, Jones and Bartlett Publishers ltd., New Delhi.
- 3. Arumugam, N. (2014). *Organic Evolution*. Saras Publication. Nagercoil, Tamil Nadu.
- 4. Verma P. S. and V. K. Agarwal, (2015). *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology*, S. Chand and Company, New Delhi.
- 5. Verma P. S. and V. K. Agarwal, (2007). *Evolution*, S. Chand and Company, New Delhi.

Reference:

- 1. Darwin, C. The Origin of species, Te. Pup. Desmond Morries, (1990). *Animal Watching* (Field Guide), Crown Pup Co., London.
- 2. Dobzhansky, T. (1951), *Genetics and the origin of species*, Columbia University Press, USA.

	Mapping with Programme Outcomes*										
CO3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	2	3	2	3	2	1	3	2	1	2	
CO2	3	3	1	3	3	1	3	3	3	3	
CO3	3	2	3	3	3	3	3	1	1	2	
CO4	3	3	3	3	3	2	3	3	3	1	
CO5	3	3	3	2	2	3	3	1	1	2	

*3 - Strong; 2 - Medium; 1 - Low

Core-IX		Credit	5
II Year	23PZOOC33: ANIMAL PHYSIOLOGY	Hours/ Week	6
III Semester		VV CCII	

LO1	Understand the functions of different systems of animals
LO2	Learn the comparative anatomy of heart structure and functions
LO3	Know the transport and exchange of gases, neural and chemical regulation of respiration
LO4	Acquire knowledge on the organization and structure of central and peripheral nervous systems

UNIT - I: Blood and circulation: Blood corpuscles, haemopoiesis and formed elements, plasma function, blood volume, blood volume regulation, blood groups, haemoglobin, immunity, haemostasis. Cardiovascular system: Comparative anatomy of heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure, neural and chemical regulation of all above

UNIT - II: Respiratory system: Comparison of respiration in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration

UNIT - III: Nervous system: Neurons, action potential, gross neuro-anatomy of the brain and spinal cord, central and peripheral nervous system, neural control of muscle tone and posture. Sense organs: Vision, hearing and tactile response

UNIT - IV: Digestive system: Digestion, absorption, energy balance, BMR. Excretory system: Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance

UNIT - V: Endocrinology and reproduction: Endocrine glands, basic mechanism of hormone action, hormones and diseases; reproductive processes, gametogenesis, ovulation, neuroendocrine regulation. Thermoregulation: Comfort zone, body temperature- physical, chemical, neural regulation, acclimatization: Stress and adaptation

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Understand the normal physiological functions and necessity to maintain a healthy Life
CO2	Get an opportunity to understand various factors that could lead to altered physiological functions and thereby health problems
CO3	Perform various physiological experiments and observations
CO4	Take up jobs in clinical labs and research institutes

TEXT BOOKS

- 1. Arumugam, N. and A. Mariakuttikan . (2017). Animal Physiology, Saras Publications, Nagercoil, Tamil Nadu.
- 2. Rastogi, S.C. (2016). Essentials of Animal Physiology, New Age International Publishers, New Delhi.
- 3. Verma, P. S., B. S. Tyagi and V. K. Agarwal, (2015). Animal Physiology. S. Chand & Company Ltd, New Delhi.
- 4. William S. Hoar, (1966). General and Comparative Physiology. Prentice Hall of India, New Delhi.
- 5. Wilson. A, (1979). Principles of Animal Physiology. Macmillan Publishing Co., Inc. New York.
- 6. Leon Goldstein, (1977). Introduction to Comparative Physiology. Holt, Rinehart and Winston, New York.
- 7. Prosser, L. and A. Brown, (1965). Comparative Physiology. Saunders Company, London.

REFERENCE BOOKS

- 1. Mohan P. Arora. (2018). Animal Physiology. Himalaya Publishing House Pvt. Ltd., New Delhi
- 2. Tomar B.S. and Neera Singh. (2016). Animal Physiology. Pragati Prakashan, Meerut, Uttar Pradesh.
- 3. Sobti R.C. (2011). Animal Physiology. Narosa Publishing House, New Delhi.
- 4. Sandeep Saxena. (2012). Animal Physiology. Oxford University Press, USA.
- 5. Arumugam N. (2014). Animal Physiology. Saras publications. Nagercoil, Tamil nadu

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	2	3	2	3	2	1	3	2	3	3	
CO2	3	3	2	3	3	3	3	2	3	3	
CO3	3	2	3	3	3	2	1	3	2	3	
CO4	3	3	3	3	3	1	2	3	3	2	
CO5	3	3	3	2	2	2	2	1	1	2	

*3 - Strong; 2 - Medium; 1 - Low

Core-X		Credit	4
II Year III Semester	23PZOOP34: PRACTICAL III - GENETICS, EVOLUTION AND ANIMAL PHYSIOLOGY	Hours/ Week	6

LO1	Acquire knowledge on various types genetics inheritance.
LO2	Learn the method of culturing of <i>Drosophila</i> and identification of their wild and mutant strains
LO3	Acquire skills to perform human karyotyping and chromosome mapping to identify abnormalities
LO4	Understand the animal evolution
LO5	Learn the various physiological processes

Practical - Genetics

- 1. Experiments on Mendelian inheritance
- 2. Experiments on polygenic inheritance
- 3. Human traits survey and data collection
- 4. Gene frequency calculations in population Autosomal, multiple alleles and sex linked genes.
- 5. Testing the significance of genetic data Chi-square test.
- 6. Human pedigree construction to study the inheritance of autosomal character.
- 7. Human pedigree for sex linked character and counseling
- 8. Culturing and maintenance of Drosophila in lab Demonstration.
- 9. Identification of sex and mutant characters in Drosophila
- 10. Karyotyping of normal man using metaphase chromosomal plate.
- 11. Identification of human syndromes from karyotyping

Practicals: Evolution

- 1. Genetic drift in small and large population using dummy materials
- 2. Sexual selection(a) Secondary sexual characters, e.g. Chimeroid fish (male), (b) Brooding organs Sea Horse (male), (c) Special sound producing organs scale insect (male), (d) Rhinoceros beetle (male).
- 3. Polymorphism- (a) Transient Polymorphism e.g. industrial melanism, (b) Neutral Polymorphism e.g. Umbonium shells, (c) Balanced Polymorphism
- 4. Genetic Assimilation in Drosophila
- 5. Identification of male and female Drosophila
- 6. Mimicry and Colouration- Concealing mimicry, e.g. Kallima butterfly, Geometrid moth, Stick insect, Leaf insect.
- 7. Warning mimicry-Viceroy and Monarch butterfly, Batesian and Mullerian mimicry.

- 8. Paleontology: Invertebrate fossil Trilobite, Vertebrate Fossil Archaeopteryx.
- 9. Osteology: Evolution of reptilian skull and its interrelationship
- 10. Evolution of mankind- similarities and differences between apes and man. Evolution of human skull

PRACTICAL - Animal Physiology

- 1. Effect of enzyme concentration on the activity of salivary amylase
- 2. Effect of substrate concentration on the activity of salivary amylase
- 3. Effect of pH concentration on the activity of salivary amylase
- 4. Oxygen consumption of fish.- Unit metabolism
- 5. Effect of thyroxin on the respiratory metabolism of fish.
- 6. Counting of blood cells (RBC and WBC).
- 7. Quantitative estimation of haemoglobin.
- 8. Quantitative estimation of proteins.
- 9. Biochemical analysis of protein, Carbohydrates and Lipids (Qualitative).

	Mapping with Programme Outcomes*									
CO3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	2	3	2	1	3	2	3	3
CO2	3	3	2	3	3	3	3	2	3	3
CO3	3	2	3	3	3	2	1	3	2	3
CO4	3	3	3	3	3	1	2	3	3	2
CO5	3	3	3	2	2	2	2	1	1	2

*3 - Strong; 2 - Medium; 1 - Low

Elective - V		Credit	3
II Year	23PZOOE35-1 : Discipline Centric Elective – V	Hours/	3
III Semester	STEM CELL BIOLOGY	Week	

LO1	To gain the basic knowledge of stem cells and their origin
LO2	To differentiate the embryonic and adult stem cells
LO3	To understand and apply the current stem cell therapies

UNIT - I: Introduction to stem cell biology: Stem cell definition, origin and hierarchy, stem cell properties, Identification and Characterization, potency and differentiation, niche of stem cell, overview of different stem cell types (embryonic stem cells, adult stem cells and induced pluripotent stem cells).

UNIT - II: Embryonic stem (ES) cell: Characterization and properties of ES cells , pluripotency and self-renewal of ES cells; molecular mechanisms regulating pluripotency and maintenance of the stem state, progressive differentiation of ES cells into ectoderm lineage organs (skin, brain and nerve), mesoderm lineage organs (heart, kidney, muscle, bone and blood), and endoderm lineage organs (lung, liver, stomach, pancreas and intestine).

UNIT – III: Adult stem cells: Mesenchymal stem cells (MSCs) - sources, properties (plasticity, homing and engraftment), potency and characterization; Haematopoietic stem cells (HSCs) - sources, properties, potency and characterization; steps involved in production of induced pluripotent stem cells (iPSCs); role of Yamanaka factor in iPSCs..

UNIT – **IV:** Stem cell and aging: aging theory; cell cycle; telomere and telomerase; senescence of stem cell; role of stem cell in aging; tissue repair and regeneration of adult stem cell.

UNIT - V: Current stem cell therapies: Advantages and disadvantages of ES cells and adult stem cells (MSCs and HSCs) therapy; Ethical concern on stem cell therapy; current stem cell therapy for various diseases; clinical outcome of stem cell therapy; state of clinical trials in adult stem cells for various diseases.

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Understand the basic knowledge of stem cells and their origin
CO2	Differentiating the embryonic and adult stem cells
CO3	Acquire knowledge on stem cells and aging
CO4	Understand and apply the current stem cell therapies for their research

Text Books

- 1. Kiessling, A.A. 2006. Human Embryonic Stem Cells (Second Ed.), Jones & Barlett Publishers.
- 2. Lanza, R. and A. Atala. 2005. Essentials of Stem Cell Biology. Academic Press, pp-712.
- 3. Turksen, K. 2004. Adult Stem Cells. Humana Press, Inc, pp-429.
- 4. Lanza, R. *et al.* 2004. Handbook of Stem Cells: Embryonic/Adult and Fetal Stem Cells (Vol. 1 & 2). Academic Press, pp-1626.
- 5. Institute of Medicine, 2002. Stem cells and the future of regenerative medicine. National Academy Press, pp-112.
- 6. Marshak, D., R.L. Gardener and D. Gottlieb. 2001. Stem Cell Biology, Cold Spring Harbour Monograph Series, 40, pp-550.
- 7. Booth, C. 2003. Stem Cell Biology and Gene Therapy, Cell Biology International, Academic Press.

Reference Books

- 1. Quesenberry, P.J., G.S. Stein, B. Forget and S. Weissman. 2001. Stem Cell Biology and Gene Therapy, Wiley Publishers, pp-584.
- 2. Sell, S. and Totowa, N.J. 2004. Stem Cells Handbook, Humana Press, pp-534.
- 3. Sullivan, S., C. A. Cowan and K. Eggan. 2007. Human Embryonic Stem Cells: The Practical Handbook, Wiley Publishers, pp-424.
- 4. Battler, A., and Leo, J. 2007. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Springer Publication, pp-422.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	2	3	2	3	2	3	2	2
CO2	3	3	2	3	3	3	3	3	3	1
CO3	3	2	3	3	3	3	2	1	3	2
CO4	3	3	3	3	3	2	2	3	1	2
CO5	3	3	3	2	2	3	3	3	3	3

*3 - Strong; 2 - Medium; 1-Low

Elective - V		Credit	3
II Year	23PZOOE35-2 : Discipline Centric Elective – V	Hours/ Week	3
III Semester	ENDOCRINOLOGY	, veen	

LO1	To learn basics of various endocrine glands
LO2	To understand structure and functions of pituitary, thyroid and parathyroid gland
LO3	To understand the structure and functions of pancreas and adrenal glands

UNIT - I: Pituitary Gland

Pituitary gland – structural organization – anterior pituitary, Pars intermedia and neurohypophysis - Hypothalamic control of pituitary function. Pituitary hormones – functions of neurohormonal peptides - diuresis and antidiuresis.

UNIT - II: Thyroid gland

Thyroid gland – structural organization – Biosynthesis of thyroid hormones – biological functions of thyroid hormones – Thyroid dysfunction.

UNIT - III: Parathyroid gland

Parathyroid – structure and functions of parathyroid hormone – hormonal regulation of calcium and phosphorus metabolism.

UNIT - IV: Pancreas

Structure of pancreas – functions of insulin – Biosynthesis and regulation of the secretion of insulin – Biological action of insulin – function of glucagon – Biological action of glucagon.

UNIT - V Adrenal glands

Adrenals – structural organization - synthesis of adrenocortical hormones – Mineralocorticoids – Glucocorticoids - functions – regulation of cortisol secretion - abnormalities of adrenocortical secretions – hormones of adrenal medulla and their biological actions.

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Understand the basics of various endocrine glands.
CO2	Pursue higher studies on endocrinology.
CO3	Take up jobs in clinical labs
CO4	Analyze biological samples of endocrinological importance

TEXT BOOKS

- Shlomo Melmed , Kenneth S. Polonsky , P. Reed Larsen and Henry M. Kronenberg . (2017). William's textbook of Endocrinology , Elsevier India.
- 2. Handley, M.E. and J.E. Levine. (2017). *Endocrinology*, Pearson Education India.
- 3. Turner C. D. (1996). *General endocrinology*. 4th Ed, W.B. Saunders Co., London.
- 4. Bentley P. J. (1998). *Comparative Vertebrate Endocrinology*. Cambridge University Press, UK.
- 5. Barrington E. J. W., (1968). An Introduction to General and Comparative Endocrinology. Academic press, London.
- 6. Williams. R. H. (1974). *Text book of endocrinology*, 5thEd. W B Souanders & co., Philadelphia, USA.

REFERENCE BOOKS

- 1. Pandey B.N. (2019). *Endocrinology*. Atlantic Publishers, Chennai, Tamil Nadu.
- 2. Jameson, J.L. (2016). *Harrison's Endocrinology*. McGraw Hill Education, New Delhi.
- 3. Lawrence I. Gilbert. (2011). *Insect Endocrinology*. Academic Press, USA.
- 4. Bruce A. White and Susan P. Porterfield (2013). *Endocrine and Reproductive Physiology*. Elsevier, India.
- 5. David, O. Norris and J.A.Carr. (2013). *Vertebrate Endocrinology*, Academic Press, USA.
- 6. Yadav B. N. (2011). *Mammalian Endocrinology*. Vishal Publishing Co., Punjab.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	1	3	3	3	3	3
CO2	3	3	3	3	1	3	2	3	3	3
CO3	3	2	3	3	1	3	3	3	3	3
CO4	3	3	3	3	1	3	3	3	3	3

*3 - Strong; 2 - Medium; 1-Low

II Year		Credit	2
III Semester	23PZOOS36: Skill Enhancement Course (SEC – II)		
SEC: II	DAIRY FARMING		

Course Objectives

1	To understand the various practices in Dairy farming.
2	To know the status of Dairy farming.
3	To be able to apply the techniques and practices needed for Dairy farming.
4	To know the difficulties in Dairy farming.

UNIT - I: Introduction to Dairy Farming- Advantages of dairying-Classification of breeds of cattle-Indigenous and exotic breeds- Selection of dairy cattle. Breeding-artificial insemination-Dairy cattle management-General Anatomy.

UNIT - II: Construction of Model Dairy House - Types of Housing - Different Managemental Parameters - Winter Management - Summer Management

UNIT - III: Feedstuffs available for livestock- Roughages -Concentrates - Energy rich concentrates - Protein rich concentrates - Mineral Supplements - Vitamin Supplements - Feed additives - Feeding management - Calves Feeding - Feeding of adults - Feeding of pregnant dairy animals - Feeding pregnant heifer.

UNIT – IV: Composition of milk-milk spoilage-pasteurization - Milk and milk products in human nutrition — Dairying as a source of additional income and employment.

UNIT - V:Contagious disease - Common Bacterial - Protozoan - Helminth and Viral Diseases - Parasitic Infestation - Vaccination - Biosecurity.

Course Outcomes (CO)

At the end of the course, the student will be able to

1	Understand the various practices in Dairy farming.
2	Know the needs for Dairy farming and the status of India in global market.
3	Apply the techniques and practices needed for Dairy farming.
4	Know the difficulties in Dairy farming and be able to propose plans against it.

Text Books

- 1. The Veterinary Books for Dairy Farmers by Roger W. Blowey.
- 2. Hand Book of Dairy Farming by Board Eiri.
- 3. Handbook of animal husbandry TATA, S.N ed., ICAR 1990
- 4. Prabakaran, R. 1998. Commercial Chicken production. Published by P. Saranya, Chennai.
- **5.** Hafez, E. S. E., 1962. Reproduction in Farm Animals, Lea & Samp; Fabiger Publisher.

Reference Books

- 1. https://agritech.tnau.ac.in/farm_enterprises/Farm%20enterprises_%20 Dairy% 20unit.html
- 2. https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22T ata,+S.N., +ed%22
- **3.** James. N. Marner, 1975. Principles of dairy processing, wiley eastern limited, New Delhi.
- 4. Baradach, JE. Ryther. JH. and, MC larney WO., 1972. Aquaculture. The farming and Husbandry of Freshwater and Marine Organisms. Wiley Inter Science, NewYork.

	Mapping with Programme Outcomes									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	L	L	S	S	M	S	L	M
CO2	M	S	S	S	M	S	M	L	S	S
CO3	M	S	S	S	S	S	S	S	S	M
CO4	M	S	S	S	M	M	L	L	M	M
CO5	S	S	S	M	S	M	S	L	S	S

S - Strong; M - Medium; L – Low

Semester	23PZOOI37: SUMMER INTERNSHIP	H/W	С
111		-	2

(Refer to the Regulations)

Core-XI		Credit	4
II Year	23PZOOC41: IMMUNOLOGY	Hours/ Week	5
IV Semester		Week	

LO1	Various basic concepts in immunology and organization of immune systems.
LO2	Mechanisms of immune response in health and their defects in various diseases.
LO3	The application of immunological principles in biomedical sciences including blood transfusion, tissue grafting and organ transplantation.
LO4	Vaccinology and its importance in disease management
LO5	To gain knowledge regarding the application of immunological techniques

UNIT - I: Introduction to Immunology: An overview; Scope of immunology, recognition of self and non-self as a basic functional feature of immune system; Concepts of external and internal defence systems; External (first line / innate) defence system: components, distribution, salient functions; Internal (second line / acquired) immune system: cellular and humoral immune components- distribution, salient functions-primary and secondary immune responses; Immune tissues / organs: types, anatomical location, structure and development; lymphocyte traffic during development; Types of immunity: innate and acquired - types, functional features; concept of adaptive immunity

UNIT - II: Antigens: Definition, characteristic features and classification; Antigenicity versus immunogenicity; Adjuvants: definition, types and applications

UNIT - III : Major effector components of cellular immune system: Lymphocytes - types, morphology, clones; sub-populations, distribution, B and T cell receptors, B and T cell epitopes, Toll-like receptors; Antigen presenting cells: antigen processing and presentation, MHC molecules and their immunologic significance.

UNIT - IV: Major effector components of humoral immune system: Antibodies - Primary structure, classification, variants and antigen-antibody interactions; Structural and functional characteristics of various antibody classes; Generation of diversity; Monoclonal antibodies: definition, production and applications; Antibody engineering and its applications. Complement system - Components, three major activation pathways, and immune functions including anaphylaxis and inflammation. Cytokines - Definition and salient functional features; Interleukins: definition, types

(lymphokines and monokines), and functions. Interferons - Origin, types and functions

UNIT - V Diseases and immune responses: Hypersensitivity: definition, Types I to IV and immune manifestations; Auto-immune diseases: onset, spectrum of diseases, and major immune responses; Immunodeficiency diseases: types including SCID and consequences; Viral (HIV), bacterial (tuberculosis) and parasitic (malaria) diseases: etiology, host immune responses and evasion by pathogens; Vaccines: types, preparations, efficacies and recent developments

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Analyze the various immunological issues
CO2	Apply immunological procedures for various immunological testing procedures
CO3	Interpret the results of immunological experiments and take up jobs in clinical labs and related institution
CO4	Carry out immunological investigation and Equip themselves for higher studies

TEXT BOOKS

- 1. Kannan, I. (2019). *Immunology*, MJP Publications, Chennai, Tamil Nadu.
- 2. Kinndt, T.J. Goldsby, R. A. and Osborne, B. A. (2007). *Immunology*, 6th Ed. W.H. Freeman and Company, New York.
- 3. Murphy, K.M. and C. Weaver. (2017). *Janeway's Immunology*, W. W. Norton & Company.
- 4. Nair, N.C., S.Leelavathy, N.Soundarapndian, T.Murugan an N.Arumugam. (2015). *A text book of Immunology*, Saras Publications, Nagercoil, Tamil Nadu.
- 5. Madhavee, L.P. (2012). *A text book of Immunology*, S. Chand and Co., New Delhi.
- 6. Rao. C.V. (2011). *Immunology*, A Text Book. 2nd Ed. Narosa Publishing House, New Delhi.

REFERENCE BOOKS

- 1. Jenni Punt, Sharon Stranford, Patricia Jones and Judith A Owen. (2018). *Kuby Immunology*. W.H. Freeman, USA.
- 2. Ramesh S. R. (2017). Immunology. McGraw-Hill, New York, USA.
- 3. Abul K. Abbas, Andrew H. Lichtman and Shiv Pillai. (2017). *Cellular and Molecular Immunology*. Elsevier, India.
- 4. Peter J. Delves, Seamus J. Martin and Dennis R. Burton. (2017). *Roitt's Immunology (Essentials)*. Wiley Blackwell, UK.
- 5. Raj Khanna. (2011). *Immunology*. Oxford University Press, USA.

	Mapping with Programme Outcomes*									
CO3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	2	3	3
CO3	3	2	2	3	3	3	3	3	3	2
CO4	2	3	2	2	3	3	3	3	3	2
CO5	2	3	3	3	2	3	2	3	3	2

*3 - Strong; 2 - Medium; 1 – Low

Core-		Credit	4
XII	23PZOOC42: ECOLOGY		
II Year		Hours/ Week	5
IV		Week	
Semester			

LO1	Learn about the ecosystem, biotic communities and utilizing the energy processing
LO2	Study the various community and population and population control
LO3	Understand the fundamentals of climatic conditions and its impact on environment
LO4	Realizing the nature of pollution and the ways for its control/reduction
LO5	Impact of environmental studies on solid waste management

UNIT - I: The Environment: Physical environment; biotic environment; biotic and abiotic interactions. Habitat and niche: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.

UNIT - II: Population ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (r and K selection); concept of metapopulation-demes and dispersal, interdemic extinctions, age structured populations -action taken to control population explosion.

UNIT - III: Species interactions: Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis. Community ecology: Nature of communities; community structure and attributes; levels of species diversity and its measurement; edges and ecotones. Ecological succession: Types; mechanisms; changes involved in succession; concept of climax.

UNIT - IV: Ecosystem: Structure and function; energy flow and mineral cycling (CNP); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, estuarine). Biogeography: Major terrestrial biomes; theory of island biogeography; bio-geographical zones of India.

UNIT - V: Applied ecology: Environmental pollution; global environmental change; biodiversity-status, monitoring and documentation; major drivers of biodiversity change; biodiversity management approaches - Waste management. Conservation biology: Principles of conservation, major

approaches to management, Indian case studies on conservation/management strategy (Project Tiger, Biosphere reserves).

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Analyse and appreciate the basic ecological concepts
CO2	Critically assess environmental disasters and suggest counter measures
CO3	Develop a mind set to safeguard natural resources and take forward the concept of sustainable development
CO4	Protect the environment by acting against pollution, take up employment in environment related agencies and institution and educate the public regarding the importance of rain water harvesting and water conservation

Text books:

- 1. Arumugam, N. (2019). *Ecology & Toxicology*, Saras Publications, Nagercoil, Tamil Nadu.
- 2. Prabhat Patnaik and Jayanath Bhattacharjee, (2012). *Environmental Biodiversity*, Wisdom Press, New Delhi.
- 3. Khitoliya, R.K. (2004). *Environmental pollution: Management and control for sustainable developments*. S. Chand & company (p) Ltd., New Delhi, India
- 4. Saha, T. K. (2007). *Ecology and environmental Biology*. Books and allied (P) Ltd. Kolkata, India.

Reference Books:

- 1. Krebs C. J. (2016). *Ecology: The experimental analysis of distribution and abundance*. Pearson India Education service (p) Ltd., New Delhi, India.
- 2. Arumugam A. and. Kumaresan V. (2016). *Environmental studies*. Saras Publication, Nagercoil, Tamil Nadu.
- 5. Mehta M (2010). *Understanding environmental science*. Discovery publishing house, New Delhi, India.
- 6. Pandy S.N. and S.P. Misra (2011). *Environment and ecology*. Ane Books Pvt. Ltd., New Delhi, India.
- 7. Agarwal K.C. (1999). *Environmental Biology*. Agro Botanica, New Delhi, India.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	2	3	3	2	3
CO2	3	3	2	2	1	3	3	3	2	2
CO3	3	2	2	1	2	3	1	1	3	1
CO4	2	2	3	3	2	1	1	3	3	3
CO5	2	3	3	2	3	2	1	2	1	3

*3 - Strong; 2 - Medium; 1 – Low

PRACTICAL		Credit	2
- IV	23PZOOP43: LAB COURSE - PRACTICAL		
II Year	- IV IMMUNOLOGY AND ECOLOGY	Hours/ Week	2
IV Semester		VV CCIA	

Course Objective:

1	Acquire knowledge to differentiate the various immune cells
2	Understand antigen antibody interactions
3	Develop the analytical skill skills to know the nature of environment
4	Learn the method of analysis of water to know the pollution of it.

Practical: IMMUNOLOGY

- 1. Demonstration of lymphoid organs
- 2. Cell imprinting of lymphoid organs
- 3. Histology of lymphoid organs
- 4. Study of bone marrow cells
- 5. Identifications of leucocytes in human blood smear.
- 6. Differential count of W.B.C. from blood smear preparation
- 7. Human blood grouping
- 8. Antigen antibody interaction-Demonstration
- 9. Rapid plasma reagent (RpR) test for syphilis

Practical: ECOLOGY

- 1. Estimation of dissolved Oxygen content of water samples
- 2. Determination of Oxygen sag curve from river
- 3. Estimation of dissolved Carbon–Dioxide
- 4. Estimation of Hydrogen sulphide in water samples
- 5. Estimation of Residual chlorine in water samples
- 6. Estimation of total dissolved solids of water samples
- 7. Determination of sulphate in water samples
- 8. Determination of iron in water samples
- 9. Determination of silicate in water samples
- 10. Determination of nitrate/Nitrate in water samples

Expected Course Outcome

On the successful completion of the course, student will be able to:

	1	differentiate the various immune cells	
ſ	2	Understand antigen antibody interactions	
	3	Develop the analytical skill skills to know the nature of environment	

4 Learn the method of analysis of water to know the pollution of it.

	Mapping with Programme Outcomes									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	L	S	М	S	M	M
CO2	S	S	L	S	S	S	М	M	M	S
CO3	M	M	M	S	M	S	S	S	S	L
CO4	S	M	S	M	S	M	S	S	S	M
CO5	M	S	S	M	M	S	M	L	S	M

S - Strong; M - Medium; L-Low

		Credit	7
II Year	23PZOOD44: PROJECT WITH VIVA-VOCE	Hours/ Week	10
IV Semester		VV CCR	

(Refer to the regulation for additional information)

Elective - VI		Credit	3
II Year	Elective – VI : Industry/ Entrepreneurship	Hours/ Week	4
IV Semester	23PZOOE45-1: MEDICAL LABORATORY TECHNIQUES	Week	

LO1	Understand protocols and procedures to collect clinical samples for blood analysis and to study human physiology.
LO2	Explain the characteristics of clinical samples and demonstrate skill in handling clinical equipment.
LO3	Evaluate the hematological and histological parameters of biological samples.

- **Unit I:** Laboratory safety toxic chemicals and biohazards waste- biosafety level- good laboratory practice hygiene and health issue physiology effect of alcohol, tobacco, smoking & junk food & its treatment biomedical waste management.
- **Unit II:** Composition of blood and their function- collection of blood & lab procedure-haemopoiesis- types of anaemia- mechanism of blood coagulation- bleeding time- clotting time-determination of hemoglobin-erythrocyte sedimentations rate- packed cell volume- Total count of RBC & WBC- Differential count WBC- blood grouping and typing- haemostasis- bleeding disorder of man Haemolytic disease of newborn, Platelet count, reticulocytes count, Absolute Eosinophil count.
- **Unit III:** Definition and scope of microbiology- structure and function of cells parasites Entamoeba- Plasmodium- Leishmania and Trypanosome-Computer tomography (CT scan) Magnetic Resonance imaging flowcytometry treadmill test PET.
- **Unit IV:** Cardiovascular system- Blood pressure Pulse regulation of heart rate, cardiac shock. Heart sounds, Electrocardiogram (ECG) significance ultra sonography- Electroencephalography (EEG).
- $\mathbf{Unit} \mathbf{V}$: Handling and labelling of histology specimens Tissue processing processing of histological tissues for paraffin embedding, block preparation. Microtomes types of microtomesectioning, staining staining methods vital staining mounting- problems encountered during section cutting and remedies Frozen section techniques- freezing microtome.

Text Books

- 1. Godker, P. B. and Darshan, P, Godker, 2011. Text book of medical Laboratory Technology, Mumbai.
- 2. Guyton and Hall, 2000. Text Book of medical Physiology, 10th edition, Elseiner, New Delhi.
- 3. Mukerjee, K.L, 1999. Medical Laboratory Technology- Vol, I, II, III. Tata MC GrawHill, New Delhi
- 4. Sood, R, 2009. Medical Laboratory technology, Methods and interpretation.

Reference Books

- 1. Manoharan, A, and Sethuraman, 2003. Essential of Clinical Heamatology, Jeypee brothers, New Delhi.
- 2. Richard, A, McPherson, Mathew, R, Pincus, 2007. Clinical and management by laboratory methods, Elsevier, Philadelphia. Published by Tata McGraw-Hill Education Pvt. Ltd.,
- 3. Ochei. J., A. Kolhatkar (2000). Medical Laboratory science: Theory and practice, Published by Tata McGraw-Hill Education Pvt. Ltd, First edition.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	2	1	1	2	2	1	2
CO2	3	3	2	3	3	3	1	2	3	3
CO3	2	3	3	3	3	3	3	3	3	1
CO4	3	3	2	2	1	2	1	2	2	3
CO5	2	2	3	3	2	3	1	1	3	3

*3 - Strong; 2 - Medium; 1-Low

Elective - VI		Credit	3
II Year	Elective – VI: Industry/ Entrepreneurship	Hours/ Week	4
IV Semester	23PZOOE45-2 :AQUACULTURE AND THEIR BY-PRODUCTS	WEEK	

LO1	To develop knowledge on the fish farm and their maintenance. Understand the methods of fish seed and feed production and develops knowledge on hatchery techniques
LO2	To apply the knowledge about different culture methods in aquaculture and gain knowledge on fish and shrimp breeding techniques and larval rearing
LO3	To identify the different fish diseases, diagnosis and their management strategies. Understands Ornamental fishes and central aquaculture organizations

Unit -1 Aquaculture

Aquaculture - definition - scope and importance -status of aquaculture in India and world. Biology of Indigenous cultivable fishes (Catla, Rohu, Mrigal).

Unit – 2 Types of Culture

Different types of cultures, Monoculture, Poly culture. Composite fish culture, Cage culture, Pen culture, Race way culture - Extensive and intensive culture.

Unit – 3 Ornamental fish culture

Aquarium – Setting – requirements. Major aquarium fishes (Guppy, Gold fish, fighter fish, Gourami and Zebra fish) and their biology.

Unit-4: Shell fish and sea weed culture

Culture of fresh water prawn - *Macrobrachium rosenbergii*. Culture of brakishwater prawn *Litopenaeus vannamei*. Culture of pearl oyster (*Pinctada fucata*), green mussel (*Perna viridis*), lobster (*Panulirus homarus*). Culture of sea weed.

Unit-5: Fishery by-products

Fish preservation: Common principles of fish preservation and major methods of fish preservation. Fishery products and by products: Fish liver oil, fish body oil, fish meal, fish flour, fish silage, fish manure and guano, fish sausage, fish glue, isinglass, fish leather, fish macroni. Fish and prawn economics of aquaculture – Fish and prawn marketing.

Course Outcomes (CO)

At the end of the course, the student would have

CO1	Knowledge on the fish farm and their maintenance. Understand the methods of fish seed and feed production and develops knowledge on hatchery techniques									
CO2	To apply the knowledge about different culture methods in aquaculture and gain knowledge on fish and shrimp breeding techniques and larval rearing									
CO3	Identify the different fish diseases, diagnosis and their management strategies. Understands Ornamental fishes and central aquaculture organizations									

Text Books

- 1. Pillay, T. V. R. (1990). Aquaculture: Principles and Practices. Blackwell Scientific Publications Ltd.
- 2. Santhanam, R. (1990). Fisheries Science. Daya Publishing House.
- 3. Sinha, V.R. P. and Srinivastava, H. C. (1991). Aquaculture Productivity. Oxford and IBH Publications CO., Ltd., New Delhi.
- 4. Yadav, B. N. (1997). Fish and fisheries. Daya Publishing house, New Delhi.

Reference Books

- 1. Das M. C. and Patnaik, P. N. (1994) Brackish water culture. Palani paramount Publications, Palani, T. N.
- 2. Day, F (1958). Fishes of India, VoL I and Vol. II. William Sawson and Sons Ltd., London.
- 3. Jhingran, V. G. (1991). Fish and Fisheries of India. Hindustan Publishing Co., India
- 4. Maheswari. K. (1983) Common fish disease and their control. Institute of Fisheries Education, Powarkads (M.P).

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	2	2	3
CO2	3	3	3	2	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	2	2	3
CO5	3	3	2	3	2	3	2	1	3	3

*3-Strong; 2-Medium; 1-Low

SKILL ENHANCEMENT COURSE/PROFESSIONAL COMPETENCY COURSE

Skill		Credit	2
Enhancement Course	Skill Enhancement Course (SEC – II)		
II Year	23PZOOS46: INTELLECTUAL PROPERTY RIGHTS	Hours/ Week	4
IV Semester		WCCK	

Learning Objective (LO):

LO1	To know the importance of qualitative and quantitative information from biological data.
LO2	Able to claim the rights for the protection of their invention done in their project work.
LO3	To identify criteria to fit one's own intellectual work in particular form of IPRs
LO4	To get registration in our country and foreign countries of their invention, designs and thesis or theory written by students during their project.

- **UNIT I:** Introduction to IPRs, Basic concepts and need for Intellectual Property Patents, Copyrights, Geographical Indications, IPR in India and Abroad Genesis and Development the way from WTO to WIPO TRIPs, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations Important examples of IPR.
- **UNIT II:** Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade secrets and Industrial Design registration in India and Abroad.
- **UNIT III:** International Treaties and Conventions on IPRs, TRIPs Agreement, PCT Agreement, Patent Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act.
- **UNIT IV:** Digital Innovations and Developments as Knowledge Assets IP laws, Cyber law and Digital Content Protection Unfair Competition Meaning and Relationship between Unfair Competition and IP laws Case studies.
- **UNIT V:** Infringement of IPRs, Enforcement Measures, Emerging issues Case studies.

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Claim the rights for the protection of their invention done in their project work.
CO2	Identify criteria to fit one's own intellectual work in particular form of IPRs
COs	To get registration in our country and foreign countries of their invention, designs and
	thesis or theory written by students during their project.
CO4	Acquire knowledge on IPR law, Cyber law and digital content protection

Text Books

- 1. Deborah E. Bouchoux, "Intellectual Property: The law of Trademarks, Copyrights, Patents and Trade secrets", Cengage learning, Third Edition, 2012.
- 2. Prabuddha Ganguli," Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011.
- 3. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 201s

Reference Books

- 1. V. Scople Vinod, Managing Intellectual Property, Prentice Hall of India Pvt Ltd, 2012
- 2. S.V Satakar Intellectual property Rights and Copy Rights, ESS Publication, New Delhi, 2002

	<u> </u>									
Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	3	3	2	2	2
CO2	3	3	2	3	2	3	3	3	2	1
CO3	3	2	2	3	2	1	1	3	1	3
CO4	2	2	3	1	2	3	3	3	3	3
CO5	2	3	3	1	3	2	2	1	1	3

*3 - Strong; 2 - Medium; 1 – Low

Extension Activity		Credit	1
II Year	23PZOOX47: EXTENSION ACTIVITY	Hours/ Week	-
IV Semester		VVCCK	

(Refer to the regulations)